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Abstract 
 
 The impact point dispersion of a direct-fire rocket can be drastically reduced 
with a ring of appropriately sized lateral pulse jets coupled to a trajectory 
tracking flight control system. The system is shown to work well against 
uncertainty in the form of initial off-axis angular velocity perturbations as well as 
atmospheric winds.  In an example case, dispersion was reduced by a factor of 
100.  Dispersion reduction is a strong function of the number of individual pulse 
jets, the pulse jet impulse, and the trajectory tracking window size.  Properly 
selecting these parameters for a particular rocket and launcher combination is 
required to achieve optimum dispersion reduction.  For relatively low pulse jet 
impulse, dispersion steadily decreases as the number of pulse jets is increased or 
as the pulse jet impulse is increased.  For a fixed total pulse jet ring impulse, a 
single pulse is the optimum pulse jet configuration when the pulse jet ring 
impulse is small due to the fact that the effect of a pulse on the trajectory of a 
rocket decreases as the round flies down range. 
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1. Introduction 

 Uncontrolled direct fire rockets exhibit high impact point dispersion, 
even at relatively short range, and as such have been employed as area weapons 
on the battlefield.  Because direct fire rockets exit the launcher with low velocity, 
any aerodynamic disturbances presented to the rocket near the launcher create 
relatively large angles of attack, leading to large aerodynamic jump and 
increased target dispersion.  Furthermore, main rocket motor thrust during the 
initial portion of flight tends to amplify the effect of initial transverse and 
angular velocity perturbations on dispersion.  The integrated effect over the 
trajectory of initial disturbances as the rocket enters atmospheric flight and high 
sensitivity to atmospheric disturbances all lead to large impact point dispersion. 

Increased design requirements being placed on direct fire ammunition, including 
direct fire rockets, call for surgical removal of select targets on the battlefield.  
Economic realities now stipulate that improved capability be delivered at 
reduced unit cost.   Small, rugged, and inexpensive  microelectromechanical 
sensors (MEMS) coupled to a suitable and inexpensive control mechanism offer 
the potential to meet these increasingly stringent design requirements.  A 
potential control mechanism that is small, durable, and can be located in close 
proximity to the sensor suite is a lateral pulse jet ring mounted forward on the 
rocket body.  The pulse jet ring consists of a finite number of individual pulse 
jets.  Each pulse jet on the ring imparts a single, short duration, large force to the 
rocket in the plane normal to the rocket axis of symmetry.  

Several investigators have explored the loads caused by a lateral pulse jet on a 
projectile body.  Srivastava [1] showed good agreement between computational 
and experimental results for the normal force and pitching moment of a lateral 
jet operating on a supersonic missile.  Later, Srivastava  [2] showed that lateral 
thrust jet effectiveness diminished as the jet thruster was gradually rolled toward 
the windward side of the missile.  Brandeis and Gill [3] performed an 
experimental investigation of effect of a lateral jet on the forces and moments on 
a supersonic missile.  They showed that jet force amplification strongly depends 
on the size and location of lifting surfaces of the missile and that jet force 
amplification is inversely proportional to jet pressure.  Using lateral pulse jets to 
improve target dispersion performance has been investigated by Harkins and 
Brown [4].  They used a set of lateral pulse jets to eliminate the off-axis angular 
rate of the projectile just after exiting the launcher.  For the notional concepts 
considered, dispersion was reduced by a factor of four. 
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The work reported here seeks to reduce the dispersion of an atmospheric rocket 
using a trajectory tracking flight control system.  Pulse jet firing logic is engaged 
when the trajectory tracking error exceeds a specific threshold.  Parametric trade 
studies that consider the effect of the number of pulse jets, pulse jet impulse, and 
trajectory tracking window size on impact point dispersion were conducted. 

2. Direct-Fire Rocket Dynamic Model 

The numerical simulation employed in this study consists of a rigid body six 
degree of freedom model typically utilized in flight dynamic modeling of 
projectiles.  A schematic of the direct-fire rocket configuration with major 
elements of the system identified is given in Figure 1.  The degrees of freedom 
include three position components of the mass center of the rocket as well as 
three Euler orientation angles of the body. The equations of motion are provided 
in equations 1–4 [5, 6]. 

Figure 1.  Schematic of a direct-fire rocket with a lateral pulse jets. 
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The applied loads appearing in equation 3 contain contributions from rocket 
weight (W), air loads (A), main rocket thrust (R), and lateral pulse jet forces (J). 
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The rocket weight contribution is given by equation 6, 
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while the air loads contribution, which acts at the center of pressure of the rocket, 
is given by equation 7. 
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The main rocket motor increases the velocity of the rocket by providing high 
thrust levels during the initial portion of the trajectory.  In some direct-fire rocket 
designs, the exhaust nozzle contains several flutes such that the exiting flow is 
turned, causing (in aggregate) a rolling moment.  To account for this effect, the 
numerical simulation models the main rocket motor as a set of four smaller 
rocket motors that act as point forces on the body.  The position and thrust 
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orientation of each small rocket motor on the body are determined to match 
known inertial properties before and after burn and to match a specified roll time 
trace.  Equation 8 provides the main rocket motor force formula. 
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In equation 8, the thrust amplitude profile, 
iRT , is a known function of time.  The 

lateral pulse jet forces are modeled in the same manner as the main rocket motor 
with two exceptions.  Since the lateral pulse jets are active over a very short 
duration of time compared to the time scale of a complete rocket trajectory, the 
thrust force is modeled as a constant when active.  Also, since by definition a 
lateral pulse jet acts in the Bj

r
 and Bk

r
 plane, the Bi

r
 component of the lateral 

pulse jet force is zero.  Equation 9 provides the lateral pulse jet force formula. 
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The pulse jet ring is located on the skin of the projectile and near the nose of the 
rocket.  Individual pulse jets are uniformly distributed azimuthally around the 
lateral pulse jet ring.  A key feature of the pulse jet configuration considered here 
is that each pulse jet can be fired only once. 

The applied moments about the rocket mass center contains contributions from 
steady air loads (SA), unsteady air loads (UA), main rocket thrust (R), and lateral 
pulse jet forces (J). 
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The moment components due to steady aerodynamic forces, main rocket motor 
forces, and lateral pulse jet forces are computed with a cross product between the 
distance vector from the mass center of the rocket and the location of the specific 
force and the force itself.  The unsteady body aerodynamic moment provides a 
damping source for projectile angular motion and is given by equation 11. 
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When the rocket motors are active, the mass, mass center location, and inertial 
properties of the rocket are updated continuously.  The center of pressure 
location and all aerodynamic coefficients depend on local Mach number.  The air 
velocity of the mass center of the rocket includes contributions from inertial 
motion of the round and atmospheric mean wind.  The mean atmospheric wind 
acts in the horizontal plane and is directed at an angle MWψ  from the Ii

r
 axis. 
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As shown in equation 13, the magnitude of the atmospheric mean wind velocity 
is a function of projectile altitude. 

 





σ= −

1000
z

tan636619.0V 1
MWMW . (13) 

In equation 13, MWσ  is the mean wind intensity. 

3. Direct-Fire Rocket Flight Control System 

The flight control system seeks to track a prespecified command trajectory 
utilizing the control authority provided by the lateral pulse jets.  A schematic of 
the flight control system block diagram is shown in Figure 2, while a schematic 
of the lateral pulse jet firing logic is given in Figure 3.  For direct-fire rockets, a 
command ballistic trajectory is available from the fire control system and can be 
downloaded to the round just prior to launch.  The trajectory tracking flight 
control system first compares the measured position of the projectile to the 
commanded trajectory to form a position error vector in the inertial frame.  The 
trajectory error is converted to the rocket body frame using equation 14. 
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Figure 2.  Trajectory tracking flight control system. 
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The magnitude and phase of the error in the off-axis plane of the rocket are 
denoted Γ  and γ , and are defined by equations 15 and 16, respectively.  

 2
Y

2
X ee +=Γ . (15) 

 ( )YZ
1 e/etan −=γ . (16) 

At each computation cycle in the flight control system, a sequence of checks are 
conducted that govern firing individual lateral pulse jets.  The conditions that 
must be satisfied for an individual lateral pulse jet to fire are as follows: 

 a. The magnitude of the off-axis trajectory tracking error must be greater 
than a specified distance. 

 THRESe>Γ . (17) 
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Figure 3.  ith individual lateral pulse jet firing logic. 

b. The time elapsed since the last lateral pulse jet firing must be greater than 
a specified duration. 

 THRES
* ttt ∆>−  (18) 

 c. The projected angle between the trajectory tracking error and the 
individual pulse jet force under consideration is less than a specified 
angle. 

 THRESPJi Z δ>∆γ−γ−π−θ &  (19) 

 d. The individual pulse jet under consideration has not been fired.  

The first two checks are valid for all lateral pulse jets, while the last two checks 
are specific to a given lateral pulse jet.  The flight control system contains only 
three parameters that must be tuned to a specific application, namely, the 
tracking error window size, the required elapsed time between pulse jet firings, 
and the angle tolerance between the tracking error and the individual pulse jet 
force. 
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4. Results 

To investigate the ability of a lateral pulse jet ring to reduce impact point 
dispersion, the equations of motion described above are numerically integrated 
using a fourth order Runge-Kutta algorithm.  The rocket configuration used in 
the simulation study to follow is a representative direct-fire rocket that is a  
1.4-m-long, fin-stabilized rocket with three popout fins on the rear of the round.  
The lateral pulse jet ring is located 1.16 m from the base of the rocket.  The main 
rocket motor burns for 1.12 s and imparts an impulse to the rocket of 6,212 N-s.  
During the main rocket motor burn, the forward velocity of the rocket is 
increased from 43.7 m/s to 767.5 m/s.  The rocket weight, mass center location 
from the base of the rocket, roll inertia, and pitch inertia  before and after burn is 
10.4/7.21 kg, 0.85/0.86 m, 0.0077/0.0058 kg m2, and 1.83/1.61 kg m2, 
respectively.  Nominally, the rocket exits the launcher with the following initial 
conditions: x =0.0 m, y =0.0 m, z =-30.5 m, φ =0.0 deg, θ =4.14 deg, ψ =0.0 deg, 
u =43.7 m/s, v=0.0 m/s, w =0.11 m/s, p =51.5 rad/s, q =-0.18 rad/s, and r =0.0 
rad/s.  

Figures 4–11 compare uncontrolled and controlled trajectories for the example 
rocket configuration against a nominal command trajectory.  The ring contains 
32 individual lateral pulse jets, where each individual pulse jet imparts an 
impulse of 20 N-s on the projectile body over a time duration of 0.01 s.  The 
rocket is launched at an altitude of 30 m toward a target on the ground, and the 
altitude and cross range equal zero at a range of 3000 m.  The trajectory tracking 
window size is set to 1.5 m, while the pulse jet elapsed time threshold is set to 
0.2 s.  The pulse jet angle threshold is set to 2°.  Figures 4 and 5 plot rocket 
altitude and cross range vs. range.  At the target range of 3000 m, the 
uncontrolled rocket altitude error is slightly greater than 110 m, while the cross 
range error is more than 100 m.  Compared to the uncontrolled trajectory, the 
controlled rocket trajectory follows the commanded trajectory well, with an 
impact error on the order of a couple meters.  The off-axis trajectory tracking 
error, Γ , is plotted in Figure 6.  While the uncontrolled rocket trajectory error is 
greater than 100 m, the trajectory tracking error for the lateral pulse jet controlled 
rocket remains under 6 m for the entire flight.  The sequence of lateral pulse jet 
firing times is depicted in Figure 12.  Twenty two of the possible 32 lateral pulse 
jets are fired in this particular example.  Notice that pulses are fired at a rate that 
does not exceed 0.2 s.  The minimum required time between successive pulses, 

THRESt∆ , is an important design parameter of the flight control system.  If THRESt∆  
is set too low, the rocket does not have sufficient time to respond and many 
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Figure 4. Altitude vs. range. 
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Figure 5.  Cross range vs. range. 
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Figure 6.  Trajectory tracking error vs. time. 
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Figure. 7.  Pulse jet firing time.
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Figure 8.  Roll angle vs. time. 
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Figure 9.  Angle vs. time. 
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Figure 10.  Euler pitch angle vs. time. 
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Figure 11.  Aerodynamic angle of attack vs. time.
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Figure 12.  Dispersion radius vs. number of pulse jets and trajectory tracking window 
size  (total ring impulse = 80 N-s, ). 

pulses will be fired, tending to over compensate for trajectory errors.  On the 
other hand, if THRESt∆  is set too high, then only a small number of pulses can 
possibly be fired and control authority is wasted.  In this instance, trajectory 
tracking will tend to build without pulse jet corrective action.   

The roll angle time history is shown in Figure 8; the roll response is essentially 
unaffected by the action of the lateral pulse jets as both the controlled and 
uncontrolled roll angle time histories are approximately equal.  A comparison of 
pitch attitude for the uncontrolled and controlled trajectories is provided in 
Figure 9.  While the nominal and uncontrolled trajectories show a steady 
decrease in pitch attitude as the rocket flies down range, the controlled trajectory 
shows oscillatory response due to the firing of pulse jets.  Total pitch angle 
excursions of greater than 10° are experienced toward the end of the trajectory.  
Similar oscillations are seen in the yaw angle time history shown in Figure 10.  
The aerodynamic angle of attack of the nominal, uncontrolled, and controlled 
cases are shown in Figure 11.  While the angle of attack for the nominal and 
uncontrolled cases remains relatively small, under 2.5°, the action of pulse jets 
induces angles of attack greater than 10° near the target.   
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The initial state of the rocket as it exits the launcher and enters free flight can be 
viewed as a random process.  The random nature of the initial free flight state 
stems from many effects, but perhaps most notably from launcher and rocket 
manufacturing tolerances combined with resulting launcher and rocket 
vibration.  Random perturbations in initial free flight conditions create target 
dispersion impact points.  Furthermore, for direct-fire rockets, perturbations in 
initial off-axis angular rates have been found to significantly contribute to the 
impact point error budget [7, 8].  Figure 13 compares impact points at a range of 
3,000 m for the uncontrolled and controlled direct-fire rocket configurations with 
a sample size of 50, where the initial pitch rate and yaw rate are independent 
Gaussian random variables.  The mean value for pitch and yaw rate is  
–0.18 rad/s and 0 rad/s, respectively.  The standard deviation for both pitch and 
yaw rate is 0.3 rad/s.  The dispersion radius is defined as the radius of a circle 
that emanates from the mean impact point and contains 67% of the impact 
points.  The large circle in Figure 12 is the dispersion radius for the uncontrolled 
case, which is equal to 130.3 m, while the dispersion radius for the controlled 
case is 1.3 m and is not noticeable on the figure.   

 

-200 -150 -100 -50 0 50 100 150 200
-200

-150

-100

-50

0

50

100

150

200

y (m)

z 
(m

)

Uncontrolled Rocket
Controlled Rocket  

 

Figure 13.  Impact point dispersion (perturbed initial pitch and yaw rate). 
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Figures 14–16 show the relationship between dispersion radius, number of pulse 
jets on the ring, and individual pulse jet impulse for three different trajectory 
tracking window sizes of 1.5 m, 3.0 m, and 4. 5 m.  As the number of individual 
pulse jets is increased, the total impulse contained in the pulse jet ring is 
increased.  In each graph, the trajectory tracking window size is shown as a 
constant dashed line.   When the impulse for the individual lateral pulse jets is 
small, dispersion radius is steadily reduced as the number of pulse jets or the jet 
impulse is increased.  When the individual lateral pulse jet impulse is relatively 
large, adding more pulse jets can actually increase the dispersion radius.  In this 
case, the lateral pulse jet impulse is so large compared to the trajectory tracking 
error, that firing a particular pulse jet tends to over corrects the tracking error. 
Contrasting Figures 13, 14, and 15 shows that as the trajectory tracking window 
size is increased, a greater value of jet impulse yields a steady decrease in the 
dispersion radius as the total number of pulse jets on the ring is increased.   
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Figure 14.  Dispersion radius vs. number of pulse jets and pulse jet impulse (trajectory 
tracking window size = 1.5 m). 
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Figure 15.  Dispersion radius vs. number of pulse jets and pulse jet impulse (trajectory 
tracking window size = 3.0 m). 
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Figure 16.  Dispersion radius vs. number of pulse jets and pulse jet impulse (trajectory 
tracking window size = 4.5 m). 
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Figure 17 shows the relationship between dispersion radius, number of pulse jets 
on the ring, and the total ring impulse for a trajectory tracking window size of  
1.5 m.  Each line on the figure represent lines of constant total ring impulse.  For 
these traces, as the number of lateral pulse jets on the ring is increased, the 
impulse for an individual lateral pulse jet decreases proportionally so the total 
ring impulse remains constant.  For relatively low total ring impulse, a single 
lateral pulse jet yields the lowest dispersion radius.  The reason for this trend is 
that the effectiveness of a pulse jet on the trajectory decreases sharply as the 
projectile flies down range.  Hence, a comparatively large and early trajectory 
correction provides more of an impact point modification than two pulses, each 
of half impulse strength, where one of the pulses occurs farther down range.   
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Figure 17.  Dispersion radius vs. number of pulse jets and total ring impulse (trajectory 
tracking window size = 3.0 m). 

As the total impulse on the ring is increased, the minimum dispersion radius is 
decreased. For relatively large total ring impulse, an optimum number of 
individual lateral pulse jets exists for a given trajectory tracking window size.  In 
the example shown in Figure 16, a total ring impulse of 64 N-s split into four 
individual lateral pulse jets provides the optimum dispersion reduction.   
Figure 12 plots the dispersion radius vs. the number of pulse jets for three 
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different trajectory tracking window sizes.  The total ring impulse for all data on 
the chart is 80 N-s.  A single impulse increases the dispersion radius for 
trajectory tracking window sizes of 1.5 m and 3.0 m.  This figure underlines the 
importance of properly selecting the number of pulse jets and the pulse jet 
impulse for a particular accuracy design requirement. 

Figures 18 and 19 plot dispersion radius as a function of the atmospheric wind 
angle for the uncontrolled and controlled rocket configurations, respectively.  An 
atmospheric wind angle of 0° corresponds to a direct head wind, whereas an 
angle of 180° represents a direct tail wind.  The uncontrolled rocket configuration 
is insensitive to direct head and tail winds; in these cases, the rocket range is 
predominantly effected.  On the other hand, side winds induce dispersion over 
130 m.  The controlled rocket configuration successfully suppresses dispersion to 
under 6 m for all wind directions.   

 

Figure 18.  Dispersion radius vs. atmospheric wind direction for the uncontrolled 
rocket (atmospheric wind speed =  7.6 m/s, number of pulse jets = 32, 
pulse jet impulse =  20 N-s, trajectory tracking window size  = 1.5 m). 
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Figure 19.  Dispersion radius vs. atmospheric wind direction for the controlled rocket 
(atmospheric wind speed  = 7.6 m/s, number of pulse jets = 32, pulse jet 
impulse = 20 N-s, trajectory tracking window size  = 1.5 m). 

5. Conclusions 

Using a previously validated six degree of freedom dynamic model of a 
direct-fire rocket, a drastic reduction in impact point dispersion using a lateral 
pulse jet control mechanism coupled to a trajectory tracking flight control system 
is demonstrated.  The ability to improve dispersion performance must be 
weighed against the cost of installing an IMU sensor suite and a pulse jet ring 
onboard existing unguided direct fire-rockets.  In designing a lateral pulse jet 
control system, the number of pulse jets and the pulse jet impulse must be 
carefully tuned against the desired impact point dispersion and the level of 
uncertainty within the rocket. 
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List of Symbols 

z,y,x  - Components of the position vector of center of mass of the composite 
body in an inertial reference frame.  

ψθφ ,,  - Euler roll, pitch and yaw angles of the projectile. 

w,v,u  - Components of the velocity vector of the mass center of the composite 
body in the body reference frame. 

r,q,p  - Components of the angular velocity vector of the projectile in the body 
reference frame.  

Z,Y,X  - Total applied force components in the aft body reference frame. 

N,M,L  - Total applied moments about rocket mass center expressed in the aft 
body reference frame. 

AAA w,v,u  - Components of the velocity of the mass center of the projectile with 
mean wind expressed in the body reference frame. 

AV  - Magnitude of the velocity vector of the mass center of the projectile 
experienced with mean wind expressed in the body reference frame. 

MWMW ,V σ  - Magnitude and wind factor of the mean atmospheric wind 
expressed in the initial reference frame. 

ρ  - Air density. 

D  - Rocket reference diameter. 

iRT  - ith main rocket motor thrust. 

iJT  - ith lateral pulse jet thrust. 

iRZiRYiRX N,N,N  - ith main rocket motor direction cosines in the body frame. 

JN  - Number of individual lateral pulse jets. 

THRESe  - Trajectory tracking window size. 

THRESt∆  - Minimum required elapsed time between successive pulse jet firing. 

THRESδ  - Pulse jet angle threshold. 
*t  - Time of the most recent pulse jet firing. 

i? - Angle between BJ
r

and the ith pulse jet.  

∆  - Pulse jet firing duration.  

T  - γ&  time constant.  
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0XC  - Zero yaw axial force aerodynamic coefficient.  

2XC  - Yaw axial force aerodynamic coefficient.  

NAC  - Normal force aerodynamic coefficient.  

DDC  - Fin cant roll moment aerodynamic coefficient.  

LPC  - Roll damping aerodynamic coefficient.  

MQC  - Pitch damping aerodynamic coefficient.  
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